Modeling and Forecasting Intraday Market Returns: a Machine Learning Approach

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Iuri H Ferreira, Marcelo C Medeiros

Ngôn ngữ: eng

Ký hiệu phân loại: 006.31 Machine learning

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 168472

In this paper we examine the relation between market returns and volatility measures through machine learning methods in a high-frequency environment. We implement a minute-by-minute rolling window intraday estimation method using two nonlinear models: Long-Short-Term Memory (LSTM) neural networks and Random Forests (RF). Our estimations show that the CBOE Volatility Index (VIX) is the strongest candidate predictor for intraday market returns in our analysis, specially when implemented through the LSTM model. This model also improves significantly the performance of the lagged market return as predictive variable. Finally, intraday RF estimation outputs indicate that there is no performance improvement with this method, and it may even worsen the results in some cases.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH