Detecting Multiple Structural Breaks in Systems of Linear Regression Equations with Integrated and Stationary Regressors

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Karsten Schweikert

Ngôn ngữ: eng

Ký hiệu phân loại: 526.32 Bench marks

Thông tin xuất bản: 2022

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 168556

 In this paper, we propose a two-step procedure based on the group LASSO estimator in combination with a backward elimination algorithm to detect multiple structural breaks in linear regressions with multivariate responses. Applying the two-step estimator, we jointly detect the number and location of structural breaks, and provide consistent estimates of the coefficients. Our framework is flexible enough to allow for a mix of integrated and stationary regressors, as well as deterministic terms. Using simulation experiments, we show that the proposed two-step estimator performs competitively against the likelihood-based approach (Qu and Perron, 2007
  Li and Perron, 2017
  Oka and Perron, 2018) in finite samples. However, the two-step estimator is computationally much more efficient. An economic application to the identification of structural breaks in the term structure of interest rates illustrates this methodology.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH