High-Dimensional Sparse Multivariate Stochastic Volatility Models

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Manabu Asai, Benjamin Poignard

Ngôn ngữ: eng

Ký hiệu phân loại: 003.76 Stochastic systems

Thông tin xuất bản: 2022

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 168616

Although multivariate stochastic volatility models usually produce more accurate forecasts compared to the MGARCH models, their estimation techniques such as Bayesian MCMC typically suffer from the curse of dimensionality. We propose a fast and efficient estimation approach for MSV based on a penalized OLS framework. Specifying the MSV model as a multivariate state space model, we carry out a two-step penalized procedure. We provide the asymptotic properties of the two-step estimator and the oracle property of the first-step estimator when the number of parameters diverges. The performances of our method are illustrated through simulations and financial data.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH