Meta-Learners for Estimation of Causal Effects: Finite Sample Cross-Fit Performance

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Gabriel Okasa

Ngôn ngữ: eng

Ký hiệu phân loại: 001.434 Experimental method

Thông tin xuất bản: 2022

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 168686

Comment: 60 pages, 17 figures, 17 tablesEstimation of causal effects using machine learning methods has become an active research field in econometrics. In this paper, we study the finite sample performance of meta-learners for estimation of heterogeneous treatment effects under the usage of sample-splitting and cross-fitting to reduce the overfitting bias. In both synthetic and semi-synthetic simulations we find that the performance of the meta-learners in finite samples greatly depends on the estimation procedure. The results imply that sample-splitting and cross-fitting are beneficial in large samples for bias reduction and efficiency of the meta-learners, respectively, whereas full-sample estimation is preferable in small samples. Furthermore, we derive practical recommendations for application of specific meta-learners in empirical studies depending on particular data characteristics such as treatment shares and sample size.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH