Partial Sum Processes of Residual-Based and Wald-type Break-Point Statistics in Time Series Regression Models

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Christis Katsouris

Ngôn ngữ: eng

Ký hiệu phân loại: 001.434 Experimental method

Thông tin xuất bản: 2022

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 168712

We revisit classical asymptotics when testing for a structural break in linear regression models by obtaining the limit theory of residual-based and Wald-type processes. First, we establish the Brownian bridge limiting distribution of these test statistics. Second, we study the asymptotic behaviour of the partial-sum processes in nonstationary (linear) time series regression models. Although, the particular comparisons of these two different modelling environments is done from the perspective of the partial-sum processes, it emphasizes that the presence of nuisance parameters can change the asymptotic behaviour of the functionals under consideration. Simulation experiments verify size distortions when testing for a break in nonstationary time series regressions which indicates that the Brownian bridge limit cannot provide a suitable asymptotic approximation in this case. Further research is required to establish the cause of size distortions under the null hypothesis of parameter stability.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH