Computer-Aided Discovery of Synergistic Drug-Nanoparticle Combinations for Enhanced Antimicrobial Activity.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Andrei Dmitrenko, Susan Jyakhwo, Vladimir V Vinogradov

Ngôn ngữ: eng

Ký hiệu phân loại: 338.9 Economic development and growth

Thông tin xuất bản: United States : ACS applied materials & interfaces , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 169322

Antibiotic resistance is a critical global public health challenge driven by the limited discovery of antibiotics, the rapid evolution of resistance mechanisms, and persistent infections that compromise treatment efficacy. Combination therapies using antibiotics and nanoparticles (NPs) offer a promising solution, particularly against multidrug-resistant (MDR) bacteria. This study introduces an innovative approach to identifying synergistic drug-NP combinations with enhanced antimicrobial activity. To carry this out, we compiled two groups of data sets to predict the minimal concentration (MC) and zone of inhibition (ZOI) of various drug-NP combinations. CatBoost regression models achieved the best 10-fold cross-validation R
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH