Drug molecules can reach intracellular targets by different mechanisms, such as passive diffusion, active transport, and endocytosis. Endocytosis is the process by which cells engulf extracellular material by forming a vesicle and transporting it into the cells. In addition to its biological functions, endocytosis plays a vital role in the internalization of the therapeutic molecules. Clathrin-mediated endocytosis, caveolar endocytosis, and macropinocytosis are the most researched routes in the field of drug delivery. In addition to conventional small therapeutic molecules, the use of nanoformulations and large molecules, such as nucleic acids, peptides, and antibodies, have broadened the field of drug delivery. Although the majority of small therapeutic molecules can enter cells via passive diffusion, large molecules, and advanced targeted delivery systems, such as nanoparticles, are internalized by the endocytic route. Therefore, it is imperative to understand the characteristics of the endocytic routes in greater detail to design therapeutic molecules or formulations for successful delivery to the intracellular targets. This review highlights the prospects and limitations of the major endocytic routes for drug delivery, with a major emphasis on macropinocytosis. Since macropinocytosis is a non-selective uptake of extracellular matrix, the selective induction of macropinocytosis, using compounds that induce macropinocytosis and modulate macropinosome trafficking pathways, could be a potential approach for the intracellular delivery of diverse therapeutic modalities. Furthermore, we have summarized the characteristics associated with the formulations or drug carriers that can affect the endocytic routes for cellular internalization. The techniques that are used to study the intracellular uptake processes of therapeutic molecules are briefly discussed. Finally, the major limitations for intracellular targeting, endo-lysosomal degradation, and different approaches that have been used in overcoming these limitations, are highlighted in this review.