Constructing supramolecular artificial light-harvesting systems (ALHSs) based on the Förster resonance energy transfer (FRET) mechanism provides an optimal platform for understanding natural photosynthesis and simulating natural light-harvesting systems. In the present work, rigid macrocycle K-1 with a nonplanar conformation and aggregation-induced emission (AIE) properties was selected as an energy donor in ALHSs, while the non-cyclic AIEgen K-2 was used for a comparative study. In aqueous solution, an efficient one-step energy-transfer process was established between blue-emitting K-1 and an acceptor (namely PBTB) with orange fluorescence to afford a high energy-transfer efficiency (