Enhanced Cell Proliferation, Migration, and Fibroblast Differentiation with Electrospun PCL-Zinc Scaffolds Coated with Fibroblast-Derived ECM.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Narayan Bhattarai, Alexis Moody

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : ACS omega , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 172035

Despite tremendous improvement in the development of tissue-regenerating materials, a promising solution that provides an optimal environment remains to be accomplished. Here, we report a composite nanofiber biomaterial scaffold as a promising solution that closely mimics the extracellular matrix (ECM) to improve cell viability, proliferation, and migration. Initially, nanofiber composites of polycaprolactone (PCL) and zinc (Zn) metal were fabricated by using electrospinning. The resulting PCL-Zn (PZ) nanofibers effectively guided the growth of NIH3T3 fibroblasts for 7 days, forming a fibroblast cell sheet. The PZ fibers were decellularized to remove autologous and allogenic cellular antigens while leaving an intact ECM with structural and functional components. The resulting nanofiber PCL-Zn-ECM (PZE) showcased a natural ECM bonded to the surface, providing a bioactive element to the interconnected fibers. The reseeding of NIH3T3 fibroblasts demonstrated the scaffold's excellent capacity to direct and support cell proliferation. Furthermore, in vitro cytotoxicity analysis and morphological staining confer the scaffold's biocompatibility. The PZE scaffold presents a promising development in which these scaffolds can be further used for various regenerative medicine applications including wound healing.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH