Deciphering the microbiome dynamics in an effective banana Fusarium wilt biocontrol interaction system.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Edwinraj Esack, Amaresh Hadimani, Deepa Jaganathan, V Kantharaju, M Loganathan, Thangavelu Raman, R Selvarajan

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Germany : 3 Biotech , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 172886

UNLABELLED: This study explored the effects of bacterial and fungal biocontrol agents (consortia) on the microbiome of Fusarium wilt (Foc TR4)-infected Cavandish banana soils in terms of alteration of prevalence and abundance. The results showed a significant shift in microbial diversity, dominance, abundance, evenness, richness and composition core and indicator microbiome in response to soil applied consortia and untreated controls. A total of 2857 bacterial OTUs from 331 families across 40 phyla dominated with Bacillaceae (40.2%), Acidobacteriaceae (14.2%), Haloarculaceae (12.6%), and Paenibacillaceae (9.4%). There were 4,868 fungal OTUs from 520 families across 18 phyla dominant with Mortierellaceae (20.9%), Cortinariaceae (7.6%), Aspergillaceae (6.2%), Pandeidae (5.6%), and Pyronemataceae (5.0%). Alpha diversity analysis indicated that bacterial diversity varied across treatments where T2 has the highest OTUs, while fungal diversity remained relatively stable across the treatments. Beta diversity and PCoA analysis revealed the differences in community compositions across treatments in both bacterial and fungal microbiome. Bacterial communities in T3 and T5 were highly similar, whereas T4 had a notable difference in fungal communities. This study identified a total of 192 bacterial core OTUs dominated with Firmicutes, Proteobacteria, and Acidobacteriia. In the case of fungi, 59 core OTUs from Ascomycota, Basidiomycota, and Mucoromycota are the most abundant ones within the treatments. Venn diagram revealed unique, common and shared OTUs suggesting antagonistic interactions of the soil applied consortia. DESeq2 analysis revealed a significant shift of core microbiome, where positive fold changes in Betaproteobacteria for bacterial, and SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-025-04223-7.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH