Up to now, significant research efforts have been directed towards investigating indirubin and its derivatives as potential candidates for developing new compounds with multiple biological activities. In the present work, natural indirubin and numerous of its chemical derivatives referred to as indirubins have been investigated computationally using DFT method with the B3LYP/6-311 + G(d,p) level of theory, in order to reveal structure- biological activity relationship. We started with a structural properties description. Results analysis indicated that extra interaction sites were provided through the set of substitutions in compounds (1): Indirubin-3'-monoxime, (2): Indirubin-5-sulfonic acid, (3): 5-Nitro-indirubinoxime, (4): 5'-OH-5-nitro-indirubinoxime (AGM130), (5): 7-Bromo-5'-carboxyindirubin-3'-oxime, and (6): 7 BIO and consequently, extra hydrogen bonds may be formed with the active sites of molecular targets, such as GSK-3, CDKs, and Aurora kinases, as well as the aryl hydrocarbon receptor. Subsequently, to get more information on the electronic properties of indirubin and its analogues, HOMO, LUMO, E