Lung carcinoma is the major contributor to global cancer incidence and one of the leading causes of cancer-related mortality worldwide. Irregularities in signal transduction events, genetic alterations, and mutated regulatory genes trigger cancer development and progression. Selective targeting of molecular modulators has substantially revolutionized cancer treatment strategies with improvised efficacy. The aurora kinase B (AURKB) is a critical component of the chromosomal passenger complex and is primarily involved in lung cancer pathogenesis. Since AURKB is an important therapeutic target, the design and development of its potential inhibitors are attractive strategies. In this study, noscapine was selected and validated as a possible inhibitor of AURKB using integrated computational, spectroscopic, and cell-based assays. Molecular docking analysis showed noscapine occupies the substrate-binding pocket of AURKB with strong binding affinity. Subsequently, MD simulation studies confirmed the formation of a stable AURKB-noscapine complex with non-significant alteration in various trajectories, including RMSD, RMSF, Rg, and SASA. These findings were further experimentally validated through fluorescence binding studies. In addition, dose-dependent noscapine treatment significantly attenuated recombinant AURKB activity with an IC