Characterization of 35 Novel NR5A1/SF-1 Variants Identified in Individuals With Atypical Sexual Development: The SF1next Study.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Luis Castaño, Christa E Flück, Chrysanthi Kouri, Idoia Martinez de Lapiscina, Rawda Naamneh Elzenaty, Kay-Sara Sauter, Grit Sommer

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : The Journal of clinical endocrinology and metabolism , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 174345

CONTEXT: Steroidogenic factor 1 (NR5A1/SF-1) is a nuclear receptor that regulates sex development, steroidogenesis, and reproduction. Genetic variants in NR5A1/SF-1 are common among differences of sex development (DSD) and associate with a wide range of phenotypes, but their pathogenic mechanisms remain unclear. OBJECTIVE: Novel, likely disease-causing NR5A1/SF-1 variants from the SF1next cohort of individuals with DSD were characterized to elucidate their pathogenic effect. METHODS: Different in silico tools were used to predict the impact of novel NR5A1/SF-1 variants on protein function. An extensive literature review was conducted to compare and select the best functional studies for testing the pathogenic effect of the variants in a classic cell culture model. The missense NR5A1/SF-1 variants were tested on the promoter luciferase reporter vector -152CYP11A1_pGL3 in HEK293T cells and assessed for their cytoplasmic/nuclear localization by Western blot. RESULTS: Thirty-five novel NR5A1/SF-1 variants were identified in the SF1next cohort. Seventeen missense NR5A1/SF-1 variants were functionally tested. Transactivation assays showed reduced activity for 40% of the variants located in the DNA binding domain and variable activity for variants located elsewhere. Translocation assessment revealed 3 variants (3/17) with affected nuclear translocation. No clear genotype-phenotype, structure-function correlation was found. CONCLUSION: Genetic analyses and functional assays do not explain the observed wide phenotype of individuals with these novel NR5A1/SF-1 variants. In 9 individuals, additional likely disease-causing variants in other genes were found, strengthening the hypothesis that the broad phenotype of DSD associated with NR5A1/SF-1 variants may be caused by an oligogenic mechanism.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH