Obtaining 3D Atomic Reconstructions from Electron Microscopy Images Using a Bayesian Genetic Algorithm: Possibilities, Insights, and Limitations.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Annick De Backer, Ivan Lobato, Tom Stoops, Sandra Van Aert

Ngôn ngữ: eng

Ký hiệu phân loại: 005.117 Object-oriented programming

Thông tin xuất bản: England : Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 175471

The Bayesian genetic algorithm (BGA) is a powerful tool to reconstruct the 3D structure of mono-atomic single-crystalline metallic nanoparticles imaged using annular dark field scanning transmission electron microscopy. The number of atoms in a projected atomic column in the image is used as input to obtain an accurate and atomically precise reconstruction of the nanoparticle, taking prior knowledge and the finite precision of atom counting into account. However, as the number of parameters required to describe a nanoparticle with atomic detail rises quickly with the size of the studied particle, the computational costs of the BGA rise to prohibitively expensive levels. In this study, we investigate these computational costs and propose methods and control parameters for efficient application of the algorithm to nanoparticles of at least up to 10 nm in size.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH