Enhancing Semantic Segmentation in High-Resolution TEM Images: A Comparative Study of Batch Normalization and Instance Normalization.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Bashir Kazimi, Stefan Sandfeld

Ngôn ngữ: eng

Ký hiệu phân loại: 070.48346 Journalism

Thông tin xuất bản: England : Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 175566

Integrating deep learning into image analysis for transmission electron microscopy (TEM) holds significant promise for advancing materials science and nanotechnology. Deep learning is able to enhance image quality, to automate feature detection, and to accelerate data analysis, addressing the complex nature of TEM datasets. This capability is crucial for precise and efficient characterization of details on the nano-and microscale, e.g., facilitating more accurate and high-throughput analysis of nanoparticle structures. This study investigates the influence of batch normalization (BN) and instance normalization (IN) on the performance of deep learning models for semantic segmentation of high-resolution TEM images. Using U-Net and ResNet architectures, we trained models on two different datasets. Our results demonstrate that IN consistently outperforms BN, yielding higher Dice scores and Intersection over Union metrics. These findings underscore the necessity of selecting appropriate normalization methods to maximize the performance of deep learning models applied to TEM images.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH