High nickel layered oxides provide high energy densities as cathodes for next-generation batteries. However, critical issues such as capacity fading and voltage decay, which derive from labile surface reactivity and phase transition, especially under high-rate high-voltage conditions, prevent their commercialization. Here we propose a fluorination strategy to simultaneously introduce F atoms into oxygen layer and create a F aggregated interface. Substitution F for O stabilizes the layered ionic framework as the F ions can anchor the internal transition metal ions through strong TM-F bonding interaction, alleviating anisotropic lattice strain accumulation and release during the cycle, and promoting the Li