A novel generative multi-task representation learning approach for predicting postoperative complications in cardiac surgery patients.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Joanna Abraham, Thomas Kannampallil, Chenyang Lu, Junbo Shen, Bing Xue

Ngôn ngữ: eng

Ký hiệu phân loại: 617.96041 Operative surgery and special fields of surgery

Thông tin xuất bản: England : Journal of the American Medical Informatics Association : JAMIA , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 176256

OBJECTIVE: Early detection of surgical complications allows for timely therapy and proactive risk mitigation. Machine learning (ML) can be leveraged to identify and predict patient risks for postoperative complications. We developed and validated the effectiveness of predicting postoperative complications using a novel surgical Variational Autoencoder (surgVAE) that uncovers intrinsic patterns via cross-task and cross-cohort presentation learning. MATERIALS AND METHODS: This retrospective cohort study used data from the electronic health records of adult surgical patients over 4 years (2018-2021). Six key postoperative complications for cardiac surgery were assessed: acute kidney injury, atrial fibrillation, cardiac arrest, deep vein thrombosis or pulmonary embolism, blood transfusion, and other intraoperative cardiac events. We compared surgVAE's prediction performance against widely-used ML models and advanced representation learning and generative models under 5-fold cross-validation. RESULTS: 89 246 surgeries (49% male, median [IQR] age: 57 [45-69]) were included, with 6502 in the targeted cardiac surgery cohort (61% male, median [IQR] age: 60 [53-70]). surgVAE demonstrated generally superior performance over existing ML solutions across postoperative complications of cardiac surgery patients, achieving macro-averaged AUPRC of 0.409 and macro-averaged AUROC of 0.831, which were 3.4% and 3.7% higher, respectively, than the best alternative method (by AUPRC scores). Model interpretation using Integrated Gradients highlighted key risk factors based on preoperative variable importance. DISCUSSION AND CONCLUSION: Our advanced representation learning framework surgVAE showed excellent discriminatory performance for predicting postoperative complications and addressing the challenges of data complexity, small cohort sizes, and low-frequency positive events. surgVAE enables data-driven predictions of patient risks and prognosis while enhancing the interpretability of patient risk profiles.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH