Guarding Drinking Water Safety against Harmful Algal Blooms: Could UV/Cl

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Armah de la Cruz, Dionysios D Dionysiou, Xiaodi Duan, Alexandria L B Forster, Patrick T Justen, Minghao Kong, Afzaal Nadeem Mohammed, Mallikarjuna N Nadagouda, Kevin O'Shea, Evangelia Anna Passa, Bangxing Ren, Susan D Richardson, Toby Sanan, Judy A Westrick, Jagjit S Yadav

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : Environmental science & technology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 176450

Frequent and severe occurrences of harmful algal blooms increasingly threaten human health by the release of microcystins (MCs). Urgent attention is directed toward managing MCs, as evidenced by rising HAB-related do not drink/do not boil advisories due to unsafe MC levels in drinking water. UV/chlorine treatment, in which UV light is applied simultaneously with chlorine, showed early promise for effectively degrading MC-LR to values below the World Health Organization's guideline limits. Still, much is unknown regarding potential disinfection byproduct formation and associated toxicity, which can occur from the reaction of chlorine and other reactive species with MCs and algal and natural organic matter. To ensure UV/chlorine guarding drinking water for human consumption, the degradation and detoxification of four of the most problematic MC variants, namely, MC-LR, -RR, -YR, and -LA, which differ in amino acid substituents, were evaluated using UV/chlorine and compared to results from chlorination. Overall, UV/chlorine effectively enhanced MC degradation kinetics and generated less halogenated disinfection byproducts in the target analysis of 11 types of DBPs_C
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH