ConspectusZinc metal batteries (ZMBs) appear to be promising candidates to replace lithium-ion batteries owing to their higher safety and lower cost. Moreover, natural reserves of Zn are abundant, being approximately 300 times greater than those of Li. However, there are some typical issues impeding the wide application of ZMBs. Traditional inorganic cathodes exhibit an unsatisfactory cycling lifetime because of structure collapse and active materials dissolution. Apart from inorganic cathodes, organic materials are now gaining extensive attention as ZMBs cathodes because of their sustainability, high environmental friendliness, and tunable molecule structure which make them usually exhibit superior cycling life. Nevertheless, due to the inferior conductivity of organic materials, their mass loading and volumetric energy density still cannot meet our demands. In addition, the specific working mechanism of inorganic/organic cathodes also needs further investigation, necessitating the use of advanced in situ characterization technologies. Reversibility of metallic Zn anodes is also crucial in determining the overall cell performances. Like Li and Na anodes, uncontrolled dendrite growth is also an annoying problem for Zn anodes, which may penetrate the separator and cause inner short circuit. In aqueous electrolyte, highly reactive H