Insufficient ionic conductivity and elevated desolvation energy barrier of electrolytes limit the low-temperature applications of lithium metal batteries (LMBs). Weakly solvating electrolytes (WSEs), with limited lithium salt dissociation capability, are prone to desolvate and drive anion-rich aggregates (AGGs). However, significant AGGs result in increased viscosity and low ionic mobility, contributing to battery failure at low temperatures (≤-20 °C). Here, we propose and achieve a transformation of WSEs' solvation structures from AGGs to contact ion pairs (CIPs) through modulating the overall solvation capability, thereby achieving the balance between weak Li