The deposition of conformal films from redox-active biological molecules, such as catechols, catecholamines, and other polyphenols, has demonstrated great versatility in terms of the substrate used. Precursors of allomelanins, mainly found in plants and fungi, have been largely overlooked as precursors for the design of conformal and robust coatings. Moreover, their potential application for the electrodeposition of films on conductive substrates has not yet been investigated. Here, the electrodeposition by cyclic voltammetry and chronoamperometry of 1,8-dihydroxynaphthalene (1,8-DHN), a precursor of allomelanin, onto gold electrodes and onto Co-Cr alloys from aqueous solution-ethanol mixtures yields films with potential sweep rate tunable thickness and swelling. The resulting films are antioxidants, and the reservoir of antioxidant moieties is not limited to their surface but also extends into the bulk of the film. In addition, the films produced after a limited energy supply (in the potential window -1 to +1 V vs Ag/AgCl) are strongly antimicrobial against two strains of