Colloidal crystal engineering with DNA is a powerful way of generating a wide variety of crystals spanning over 90 different symmetries. However, in many cases, crystals with well-defined habits are difficult, if not impossible, to make, in part due to rapid crystal defect formation and propagation. This is especially true in the case of face-centered cubic (FCC) structures. Herein, we report a strategy that uses formamide as a chemical modulator to slow down colloidal crystal growth, which decreases defect formation and yields higher-quality crystals. Formamide forms hydrogen bonds with DNA bases and destabilizes the DNA duplex
in the context of colloidal crystallization, formamide leads to the disassembly of undercoordinated particles (defect architectures) and facilitates their reassembly into structures with the maximum number of nearest-neighbor contacts and DNA bonds. When targeting an FCC lattice comprised of DNA-modified spherical 20 nm particles, formamide promotes the formation of its Wulff polyhedron (a truncated octahedron), never observed before in colloidal crystal engineering with DNA. Importantly, kinetic habits, including tetrahedra, octahedra, icosahedra, and decahedra, are also observed depending on formamide concentration.