Synthesis of Machine Learning-Predicted Cs

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Mohamed-Raouf Amara, Marina Cagnon Trouche, Michele Casula, Andy Paul Chen, Ivan Cheong, Carole Diederichs, Martial Duchamp, Maria Hellgren, Kedar Hippalgaonkar, Manaswita Kar, Yeng Ming Lam, Benjamin Lenz, Pritish Mishra, Shakti Prasad Padhy, Jose Recatala-Gomez, Tze Chien Sum, Zengshan Xing, Mengyuan Zhang

Ngôn ngữ: eng

Ký hiệu phân loại: 678.72 Synthetic rubber and derivatives

Thông tin xuất bản: United States : ACS nano , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 178707

Halide perovskites are positioned at the forefront of photonics, optoelectronics, and photovoltaics, owing to their excellent optical properties, with emission wavelengths ranging from blue to near-infrared, and their ease in manufacturing. However, their vast composition space and the corresponding emission energies are still not fully mapped, and guided high-throughput screening that allows for targeted material synthesis would be desirable. To this end, we use experimental data from the literature to build a machine learning model, predicting the band gap of 10,920 possible compositions. Focusing on one of the most promising candidates, Cs
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH