Machine learning enables high-throughput, low-replicate screening for novel anti-seizure targets and compounds using combined movement and calcium fluorescence in larval zebrafish.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Christopher Michael McGraw, Annapurna Poduri

Ngôn ngữ: eng

Ký hiệu phân loại: 006.31 Machine learning

Thông tin xuất bản: Netherlands : European journal of pharmacology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 178749

Identifying new anti-seizure medications (ASMs) is difficult due to limitations in animal-based assays. Zebrafish (Danio rerio) serve as a model for chemical and genetic seizures, but current methods for detecting anti-seizure responses are limited by incomplete detection of anti-seizure responses (locomotor assays) or low-throughput (electrophysiology, fluorescence microscopy). To overcome these challenges, we developed a novel high-throughput method using combined locomotor and calcium fluorescence data from unrestrained larval zebrafish in a 96-well plate reader. Custom software tracked fish movement and fluorescence changes (deltaF/F0) from high-speed time-series, and logistic classifiers trained with elastic net regression distinguished seizure-like activity in response to the GABA
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH