Thermal-solutal-induced bistability of evaporating multicomponent liquid thin films.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Detlef Lohse, Chao Sun, Yuki Wakata, Feng Wang

Ngôn ngữ: eng

Ký hiệu phân loại: 530.4275 States of matter

Thông tin xuất bản: United States : Proceedings of the National Academy of Sciences of the United States of America , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 178835

Volatile multicomponent liquid films show rich dynamics, due to the complex interplay of gradients in temperature and in solute concentrations. Here, we study the evaporation dynamics of a tricomponent liquid film, consisting of water, ethanol, and trans-anethole oil (known as "ouzo"). With the preferential evaporation of ethanol, cellular convective structures are observed both in the thermal patterns and in the nucleated oil droplet patterns. However, the feature sizes of these two patterns can differ, indicating dual instability mechanisms dominated by either temperature or solute concentration. Using numerical simulations, we quantitatively compare the contributions of temperature and solute concentration on the surface tension. Our results reveal that the thermal Marangoni effect predominates at the initial evaporation stage, resulting in cellular patterns in thermal images, while the solutal Marangoni effect gradually becomes dominant. By regulating the transition time of this thermal-solutal-induced bistability and the nucleation time of oil microdroplets in the ternary mixture, the oil droplet patterns can be well controlled. This capability not only enhances our understanding of the evaporation dynamics but also paves the way for precise manipulation of nucleation and deposition processes at larger scales.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH