Identifying new classes of financial price jumps with wavelets.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Cecilia Aubrun, Michael Benzaquen, Jean-Philippe Bouchaud, Rudy Morel

Ngôn ngữ: eng

Ký hiệu phân loại: 610.28 Auxiliary techniques and procedures; apparatus, equipment, materials

Thông tin xuất bản: United States : Proceedings of the National Academy of Sciences of the United States of America , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 178839

We introduce an unsupervised classification framework that leverages a multiscale wavelet representation of time-series and apply it to stock price jumps. In line with previous work, we recover the fact that time-asymmetry of volatility is the major feature that separates exogenous, news-induced jumps from endogenously generated jumps. Local mean-reversion and trend are found to be two additional key features, allowing us to identify new classes of jumps. Using our wavelet-based representation, we investigate the endogenous or exogenous nature of cojumps, which occur when multiple stocks experience price jumps within the same minute. Perhaps surprisingly, our analysis suggests that a significant fraction of cojumps result from an endogenous contagion mechanism.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH