The interplay between light and magnetism sparks groundbreaking concepts for the next-generation versatile spintronic and nanoelectronic devices. However, direct measurements of light-magnetism coupling remain challenging due to the intrinsic difficulties in characterizing these properties simultaneously. Herein, via harnessing magnetic proximity and anomalous Hall effect (AHE), we report the effective modification of magnetism in the graphene/CrSBr heterostructure by an unpolarized 405 nm light. The emergence of magnetism in graphene is ascribed to the proximity effect, which arises from its coupling with the neighboring CrSBr. The photoinduced charge transfer doping into graphene exerts a precise tune over the Fermi level (