Machine learning-based evolution of water quality prediction model: An integrated robust framework for comparative application on periodic return and jitter data.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Lihua Chen, Yi He, Xizhi Nong, Jiahua Wei

Ngôn ngữ: eng

Ký hiệu phân loại: 133.594 Types or schools of astrology originating in or associated with a

Thông tin xuất bản: England : Environmental pollution (Barking, Essex : 1987) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 179145

Accurate water quality prediction is paramount for the sustainable management of surface water resources. Current deep learning models face challenges in reliably forecasting water quality due to the non-stationarity of environmental conditions and the intricate interactions among various environmental factors. This study introduces a novel, multi-level coupled machine learning framework that integrates data denoising, feature selection, and Long Short-Term Memory (LSTM) networks to enhance predictive accuracy. The findings demonstrate that the LSTM model incorporates data denoising pre-processing, capturing non-stationary water quality patterns more effectively than the baseline model, enhancing prediction performance (R
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH