Accurate genomic prediction for grain yield and grain moisture content of maize hybrids using multi-environment data.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Qinxin Cui, Shang Gao, Takele Weldu Gebrewahid, Tingting Guo, Yiliang Guo, Kunhui He, Changling Huang, Huihui Li, Liang Li, Yanwei Li, Zhanyi Li, Liwei Liu, Yiqun Song, Qingzhen Tian, Jiankang Wang, Jingxin Wang, Luyan Zhang

Ngôn ngữ: eng

Ký hiệu phân loại: 133.5266 Astrology

Thông tin xuất bản: China (Republic : 1949- ) : Journal of integrative plant biology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 179959

Incorporating genotype-by-environment (GE) interaction effects into genomic prediction (GP) models with multi-environment climate data can improve selection accuracy to accelerate crop breeding but has received little research attention. Here, we conducted a cross-region GP study of grain moisture content (GMC) and grain yield (GY) in maize hybrids in two major Chinese growing regions using data for 19 climatic factors across 34 environments in 2020 and 2021. Predictions were conducted in 2,126 hybrids generated from 475 maize inbred lines, using 9,355 single nucleotide polymorphism markers for genotyping. Models based on genomic best linear unbiased prediction (GBLUP) incorporating GE interaction effects of 19 climatic factors associated with day length, transpiration, temperature, and radiation (GBLUP-GE
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH