Predicting few disinfection byproducts in the water distribution systems using machine learning models.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Shakhawat Chowdhury, Syed Masiur Rahman, Karim Asif Sattar

Ngôn ngữ: eng

Ký hiệu phân loại: 006.31 Machine learning

Thông tin xuất bản: Germany : Environmental science and pollution research international , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 180589

Concerns regarding disinfection byproducts (DBPs) in drinking water persist, with measurements in water treatment plants (WTPs) being relatively easier than those in water distribution systems (WDSs) due to accessibility challenges, especially during adverse weather conditions. Machine learning (ML) models offer improved predictions of DBPs in WDSs. This study developed multiple ML models to predict Trihalomethanes (THMs), Haloacetic Acids (HAAs), Dichloroacetonitrile (DCAN), and N-nitrosodimethylamine (NDMA) in WDSs using data collected over 13 years (2008-2020) from 113 water supply systems (WSS) in Ontario. Data were collected tri-monthly (four times/year) following Ontario's regulatory requirements. Four common ML models-linear regressor (LR), random forest regressor (RFR), support vector regressor (SVR), and artificial neural networks with multiple folds cross-validation (ANN-MV) and single fold validation (ANN-SV)-were trained and tested using different datasets. R
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH