Electrochemically Driven Optical Dynamics of Reflectin Protein Films.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Michael J Gordon, Yin-Chen Lin, Daniel E Morse, Lior Sepunaru, Seren Tochikura, Joshua R Uzarski, Changxuan Yang

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Germany : Advanced materials (Deerfield Beach, Fla.) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 182362

Neuronally triggered phosphorylation drives the dynamic condensation of reflectin proteins, enabling squid to fine tune the colors reflected from specialized skin cells (iridocytes) for camouflage and communication. Reflectin, the primary component of iridocyte lamellae, forms alternating layers of protein and low refractive index extracellular space within membrane-encapsulated structures, acting as a biologically tunable distributed Bragg reflector. In vivo, reflectin condensation induces osmotic dehydration of these lamellae, reducing their thickness and shifting the wavelength of reflected light. Inspired by this natural mechanism, we demonstrate that electrochemical reduction of imidazolium moieties within the protein provides a reversible and tunable method to control the water volume fraction in reflectin thin films, allowing precise, dynamic modulation of the film's refractive index and thickness - mimicking the squid's dynamic color adaptation. To unravel the underlying mechanisms, we developed electrochemical correlative ellipsometry and surface plasmon resonance spectroscopy, enabling real-time analysis of optical property changes of reflectin films. This electrochemically driven approach offers unprecedented control over reflectin condensation dynamics. Our findings not only deepen the understanding of biophysical processes governing cephalopod coloration but also pave the way for bio-inspired materials and devices that seamlessly integrate biological principles with synthetic systems to bridge the biotic-abiotic gap.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH