Greater amberjack (Seriola dumerili) has a significant value in the global aquaculture industry because of its adaptive traits and rapid growth rate. However, the unsynchronized growth of greater amberjack poses challenges in its cultivation, and the molecular mechanisms underlying it remain unclear. In the current study, greater amberjack individuals showing growth differences were collected and subjected to transcriptomics and metabolomics analyses. Metabolomics analysis revealed 164 and 206 significantly different metabolites (SDMs) in the positive ion mode (POS) and negative ion mode (NEG) of liquid chromatography-tandem mass spectrometry (LC-MS/MS), respectively (VIP >
1 and P <
0.05). Transcriptomics analysis confirmed 534 differentially expressed genes (DEGs), with |log