Current methods for measuring wheat quality and dough rheology in the later stages of wheat breeding programs, including extensographs and farinographs, are costly and time-consuming. There is a significant interest in the Australian wheat industry for developing non-destructive, field-based, rapid dough-making quality assessment methods for Australian wheat varieties throughout earlier and later stages of the wheat breeding process. Fourier transform infrared (FTIR) spectroscopy is a valuable tool for analysis and quality control in the food industry as it is a simple and rapid technique requiring no sample pre-treatment before analysis. We aimed to investigate the application of FTIR spectroscopy coupled with partial least squares (PLSR) regression data analysis to rapidly assess wheat flour's dough-making quality. Results indicated that using FTIR data, PLSR could be applied to accurately predict multiple dough-making qualities, including protein content, extensibility, water absorption, dough development time (DDT), dough stability, and maximum resistance to tension (R