Pancreatic cancer (PCa) has insidious onset, high malignancy and poor prognosis. Gemcitabine (GEM) is one of the first-line chemotherapy drugs for PCa. However, GEM resistance has always been a bottleneck problem leading to recurrence and death of PCa patients. RNA-binding proteins (RBPs) are important proteins that regulate transportation, splicing, stability and translation of RNA. Abnormal expression of RBPs often lead to a series of abnormal accumulation or degradation of downstream RNA resulting in various diseases. In our study, we utilized RIP seq, RIP-qPCR, in vitro and in vivo experiments and found that pumilio2 (PUM2) was high expression in PCa, and promoted GEM resistance of PCa by regulating mRNA stability of integrin Alpha 3 (ITGA3) and other genes in focal adhesion pathway, and there was positive feedback regulation between PUM2 and transcription factor early growth response gene 1 (EGR1), that is PUM2 binding to 3'UTR region of EGR1 mRNA, and EGR1 binding to promoter region of PUM2 gene. The discovery of EGR1/PUM2/ITGA3 axis provided a solid experimental basis for the selection of chemotherapy regiments for PCa patients and exploration of combined regimens to reverse GEM resistance in the future.