Convective stability of the critical waves of an FKPP-type model for self-organized growth.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Florian Kreten

Ngôn ngữ: eng

Ký hiệu phân loại: 126 The self

Thông tin xuất bản: Germany : Journal of mathematical biology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 183359

We construct the traveling wave solutions of an FKPP growth process of two densities of particles, and prove that the critical traveling waves are locally stable in a space where the perturbations can grow exponentially at the back of the wave. The considered reaction-diffusion system was introduced by Hannezo et al. (Cell 171(1):242-255, 2017) in the context of branching morphogenesis: active, branching particles accumulate inactive particles, which do not react. Thus, the system features a continuum of steady state solutions, complicating the analysis. We adopt a result by Faye and Holzer (J Differ Equ 269(9):6559-6601, 2020) for proving the stability of the critical traveling waves, and modify the semi-group estimates to spaces with unbounded weights. We use a Feynman-Kac formula to get an exponential a priori estimate for the tail of the PDE, a novel and simple approach.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH