We construct the traveling wave solutions of an FKPP growth process of two densities of particles, and prove that the critical traveling waves are locally stable in a space where the perturbations can grow exponentially at the back of the wave. The considered reaction-diffusion system was introduced by Hannezo et al. (Cell 171(1):242-255, 2017) in the context of branching morphogenesis: active, branching particles accumulate inactive particles, which do not react. Thus, the system features a continuum of steady state solutions, complicating the analysis. We adopt a result by Faye and Holzer (J Differ Equ 269(9):6559-6601, 2020) for proving the stability of the critical traveling waves, and modify the semi-group estimates to spaces with unbounded weights. We use a Feynman-Kac formula to get an exponential a priori estimate for the tail of the PDE, a novel and simple approach.