Rapid wall shear stress prediction for aortic aneurysms using deep learning: a fast alternative to CFD.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Abdulrahman Alnabti, Hassan Al-Thani, Faycal Bensaali, Muhammad E H Chowdhury, Ayman El-Menyar, Md Ahasan Atick Faisal, Sakib Mahmud, Onur Mutlu, Anas Tahir, Huseyin Cagatay Yalcin, Mehmet Metin Yavuz

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : Medical & biological engineering & computing , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 183679

Aortic aneurysms pose a significant risk of rupture. Previous research has shown that areas exposed to low wall shear stress (WSS) are more prone to rupture. Therefore, precise WSS determination on the aneurysm is crucial for rupture risk assessment. Computational fluid dynamics (CFD) is a powerful approach for WSS calculations, but they are computationally intensive, hindering time-sensitive clinical decision-making. In this study, we propose a deep learning (DL) surrogate, MultiViewUNet, to rapidly predict time-averaged WSS (TAWSS) distributions on abdominal aortic aneurysms (AAA). Our novel approach employs a domain transformation technique to translate complex aortic geometries into representations compatible with state-of-the-art neural networks. MultiViewUNet was trained on
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH