Global agreements to reduce the extinction risk of migratory species depend critically on intersecting migratory connectivity-the linking of individuals between regions in different seasons-and spatial patterns of environmental change. Here we integrate movement data from >
329,000 migratory birds of 112 species to develop a parameter representing exposure to global change: multispecies migratory connectivity. We then combine exposure with projected climate and land-cover changes as a measure of hazard and species conservation assessment scores as a metric of vulnerability to estimate the relative risk of migratory bird population declines across the Western Hemisphere. Multispecies migratory connectivity (exposure) is the strongest driver of risk relative to hazard and vulnerability, indicating the importance of synthesizing connectivity across species to comprehensively assess risk. Connections between breeding regions in Canada and non-breeding regions in South America are at the greatest risk, which underscores the particular susceptibility of long-distance migrants. Over half (54%) of the connections categorized as very high risk include breeding regions in the eastern United States. This three-part framework serves as an ecological risk assessment designed specifically for migratory species, providing both decision support for global biodiversity conservation and opportunities for intergovernmental collaboration to sustain migratory bird populations year-round.