BACKGROUND: Gametic variances can be predicted from the outcomes of a genomic prediction for any genotyped individual. This is widely used in plant breeding, applying the utility criterion (UC). This paper aims to examine the conditions to use UC for recurrent selection in livestock. Here, the UC for a selection candidate is the linear combination of the expected value of the future progeny (half of the candidate's breeding value) and its predicted gametic variance weighted by a coefficient RESULTS: First, generalizing previous results, we derived analytically the ratio of the variance of the candidate's gametic variance and that of half of the candidate's breeding value. This ratio depends strongly on the number of quantitative trait loci (QTL) affecting the trait and, to a lesser extent, on the distribution of QTL allele frequencies: highly unbalanced frequencies and a limited number of QTL (<
10) favor higher values of the ratio. Then, changes in average breeding values and genetic variances when recurrent selection in a population of infinite size is applied were analytically derived and analyzed for selection up to 15 generations: in this ideal situation, after 5 to 10 generations (depending on CONCLUSIONS: We conclude that the key factor to choose selection on UC rather than on estimated breeding values is the ratio between the variance of the gametic standard deviations and the variance of the breeding values (GEBV), which should be carefully evaluated.