Acquisition and Semi-Automated Analysis of Respiratory Muscle Surface Electromyography.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Laurent Brochard, Luc Janssens, Daniel Langer, Umi Matsumura, W Darlene Reid, Antenor Rodrigues, Dmitry Rozenberg

Ngôn ngữ: eng

Ký hiệu phân loại: 343.0252 Military, defense, public property, public finance, tax, commerce (trade), industrial law

Thông tin xuất bản: United States : Journal of visualized experiments : JoVE , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 1844

Evaluating respiratory drive presents challenges due to the obtrusiveness and impracticality of current methods like functional magnetic resonance imaging (fMRI). Electromyography (EMG) offers a surrogate measure of respiratory drive to the muscles, allowing the determination of both the magnitude and timing of muscle activation. The magnitude reflects the level of muscle activation, while the timing indicates the onset and offset of muscle activity relative to specific events, such as inspiratory flow and activation of other muscles. These metrics are critical for understanding respiratory coordination and control, especially under varying loads or in the presence of respiratory pathophysiology. This study outlines a protocol for acquiring and analyzing respiratory muscle EMG signals in healthy adults and patients with respiratory health conditions. Ethical approval was obtained for the studies, which included participant preparation, electrode placement, signal acquisition, preprocessing, and postprocessing. Key steps involve cleaning the skin, locating muscles via palpation and ultrasound, and applying electrodes to minimize electrocardiography (ECG) contamination. Data is acquired at a high sampling rate and gain, with synchronized ECG and respiratory flow recordings. Preprocessing includes filtering and transforming the EMG signal, while postprocessing involves calculating onset and offset differences relative to the inspiratory flow. Representative data from a healthy male participant performing incremental inspiratory threshold loading (ITL) illustrate the protocol's application. Results showed earlier activation and prolonged duration of extradiaphragmatic muscles under higher loads, correlating with increased EMG magnitude. This protocol facilitates a detailed assessment of respiratory muscle activation, providing insights into both normal and pathophysiologic motor control strategies.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH