Frequency stability improvement in EV-integrated power systems using optimized fuzzy-sliding mode control and real-time validation.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Mohit Bajaj, Benazeer Begum, Vojtech Blazek, Narendra Kumar Jena, Lukas Prokop, Binod Kumar Sahu

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: England : Scientific reports , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 185191

The rapid growth in power demand, integration of renewable energy sources (RES), and intermittent uncertainties have significantly challenged the stability and reliability of interconnected power systems. The integration of electric vehicles (EVs), with their bidirectional power flow, further exacerbates the frequency fluctuation in the power system. So, to mitigate the frequency & power deviations as well as to stabilize the power system integrated with distributed generators (DGs) and EVs, robust & intelligent control strategies are indispensable. This study dedicates a novel Fuzzy-Sliding Mode Controller (FSMC) utilized for load frequency control (LFC). First, the dynamic response has been evaluated by using a Sliding Mode Controller (SMC), showcasing its robustness against external disturbances and parameter uncertainties. Second, to enhance the performance, fuzzy logic is integrated with SMC, leveraging its adaptability to create the FSMC controller. This FSMC has achieved the superiority by handling non-linearities, communication delays and parameter variations in the system. A significant contribution like the design and tuning of the controllers using a Modified Gannet Optimization Algorithm (MGOA) has been established. The potential of MGOA over GOA has been corroborated by convergence speed and precision through benchmark functions. Furthermore, the paper extensively analyzes the impact of EV integration to the frequency and tie-line power dynamics under varying regulation capacities and uncertain operating conditions. Comparative studies demonstrate that the MGOA-tuned FSMC achieves faster settling times, reduced overshoot, and improved stability metrics compared to conventional and state-of-the-art methods. Finally, the MATLAB-based simulation results are validated through real-time implementation on the OPAL-RT 4510 platform, confirming the robustness and practicality of the proposed methodology in addressing modern power system challenges involving high renewable penetration and EV integration.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH