High-Connectivity 3D Covalent Organic Frameworks with pdp Net for Efficient C2H2/CO2 Separation.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Fengqian Chen, Qianrong Fang, Hui Li, Shilun Qiu, Fuxing Sun, Valentin Valtchev, Zitao Wang, Jie Zhang, Dan Zhao, Haorui Zheng

Ngôn ngữ: eng

Ký hiệu phân loại: 920.71 Men

Thông tin xuất bản: Germany : Angewandte Chemie (International ed. in English) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 186395

High-connectivity 3D covalent organic frameworks (COFs) have garnered significant attention due to their structural complexity, stability, and potential for functional applications. However, the synthesis of 3D COFs using mixed high-nodal building units remains a substantial challenge. In this work, we introduce two novel 3D COFs, JUC-661 and JUC-662, which are constructed using a combination of D2h-symmetric 8-nodal and D3h-symmetric 6-nodal building blocks. These COFs feature an unprecedented [8+6]-c pdp net with rare mesoporous polyhedral cages (~3.9 nm). Remarkably, JUC-661 and JUC-662 exhibit outstanding separation capabilities, achieving adsorption selectivities of 4.3 and 5.9, respectively, for C2H2/CO2 (1/1, v/v) mixtures. Dynamic breakthrough experiments confirm their excellent separation capability, maintaining this performance even under conditions of 100% humidity. Monte Carlo simulations and DFT calculations indicate that the exceptional adsorption performance is attributed to the well-defined pore cavities of the COFs, with fluorination of the building unit further enhancing C2H2 selectivity through improved electrostatic and host-guest interactions. This study expands the structural diversity of COFs and highlights their potential for low-energy separation processes.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH