Gut mucosae are composed of stratified layers of microbes, a selectively permeable mucus, an epithelial lining, and connective tissue homing immune cells. Studying cellular and chemical interactions between the gut mucosal components has been limited without a good model system. We have engineered a three-dimensional (3D) multi-cellular co-culture system we coined "3D Flipwell system" using cell culture inserts stacked against each other. This system allows an assessment of the impact of a gut mucosal environmental change on interactions between gut bacteria, epithelia, and immune cells. As such, this system can be utilized in examining the effects of exogenous stimuli, such as dietary nutrients, bacterial infection, and drugs, on the gut mucosa that could predetermine how these stimuli might influence the rest of body. Here, we describe the methods of construction and application of the new 3D Flipwell system we utilized previously in assessing the crosstalk between the gut mucosa and macrophage polarization. We demonstrate the physiological responses of different components of the co-cultures to Sepiapterin (SEP), the precursor of the nitric oxide synthase cofactor tetrahydrobiopterin (BH