Dimensional analysis meets AI for non-Newtonian droplet generation.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Claire Barnes, Salvatore Cito, Francesco Del Giudice, Alexandre Fabregat, Farnoosh Hormozinezhad

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: England : Lab on a chip , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 186837

Non-Newtonian droplets are used across various applications, including pharmaceuticals, food processing, drug delivery and material science. However, predicting droplet formation using such complex fluids is challenging due to the intricate multiphase interactions between fluids with varying viscosities, elastic properties and geometrical constraints. In this study, we introduce a novel hybrid machine-learning architecture that integrates dimensional analysis with machine learning to predict the flow rates required to generate droplets with specified sizes in systems involving non-Newtonian fluids. Unlike previous approaches, our model is designed to accommodate shear-rate-dependent viscosities and a simple estimate of the elastic properties of the fluids. It provides accurate predictions of the dispersed and continuous phases flow rates for given droplet length, height, and viscosity curves, even when the fluid properties deviate from those used during training. Our model demonstrates strong predictive power, achieving
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH