Theoretical Study on Binary Monolayers P3S-I for Photocatalytic Overall Water Splitting.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Yinxiao Du, Yuantao He, Haibo Huo, Xuan Li, Yan Li, Cairui Men, Li Shao, Yanli Yang

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Germany : Chemistry (Weinheim an der Bergstrasse, Germany) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 187007

The utilization of visible light to split water into H₂ and O₂ offers a promising solution to address the escalating global energy crisis and environmental pollution. Compared to conventional three-dimensional (3D) photocatalysts, anisotropic two-dimensional (2D) materials exhibit enhanced photocatalytic activity due to their ultrahigh surface area, reduced charge migration distance, and improved efficiency. In this study, we employ a swarm-intelligence search combined with density functional theory (DFT) calculations to propose a novel series of stable 2D phosphorus sulfides, PₓSᵧ (x, y = 1-6), as promising candidates for photocatalytic water splitting.  The P3S-I monolayer exhibits an optimal bandgap (2.485 eV), appropriate band edge positions (-3.52 eV for CBM and -6.00 eV for VBM at the HSE06 level), high carrier mobility (3246.85 cm² V⁻¹ s⁻¹ for μₑ along the y-direction and 1039.80 cm² V⁻¹ s⁻¹ for μₕ along the x-direction), and strong optical absorption coefficients (exceeding 1 × 10⁵ cm⁻¹ within the visible spectrum). Notably, the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) are facilitated concurrently at the P and S sites, respectively, driven exclusively by photogenerated electrons and holes.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH