Fabricating and Labeling Microbubbles with Fluorescent and Radioactive Tracers.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Juan Chen, Chelsea Leung, Maneesha A Rajora, Gang Zheng

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : Journal of visualized experiments : JoVE , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 1872

 Microbubbles are lipid-shelled, gas-filled particles that have evolved from vascular ultrasound contrast agents into revolutionary cancer therapy platforms. When combined with therapeutic focused ultrasound (FUS), they can safely and locally overcome physiological barriers (e.g., blood-brain barrier), deliver drugs to otherwise inaccessible cancers (e.g., glioblastoma and pancreatic cancer), and treat neurodegenerative diseases. The therapeutic arsenal of microbubble-FUS is advancing in new directions, including synergistic combination radiotherapy, multimodal imaging, and all-in-one drug loading and delivery from microbubble shells. Labeling microbubbles with radiotracers is key to establishing these expanded theranostic capabilities. However, existing microbubble radiolabeling strategies rely on purification methodologies known to perturb microbubble physicochemical properties, use short-lived radioisotopes, and do not always yield stable chelation. Collectively, this creates ambiguity surrounding the accuracy of microbubble radioimaging and the efficiency of tumor radioisotope delivery. This protocol describes a new one-pot, purification-free microbubble labeling methodology that preserves microbubble physicochemical properties while achieving >
 95% radioisotope chelation efficiency. It is versatile and can be applied successfully across custom and commercial microbubble formulations with differing acyl lipid chain length, charge, and chelator/probe (porphyrin, DTPA, DiI) composition. It can be adaptively applied during ground-up microbubble fabrication and to pre-made microbubble formulations with modular customizability of fluorescence and multimodal fluorescence/radioactive properties. Accordingly, this flexible method enables the production of tailored, traceable (radio, fluorescent, or radio/fluorescent active) multimodal microbubbles that are useful for advancing mechanistic, imaging, and therapeutic microbubble-FUS applications.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH