IRMA: Machine learning-based harmonization of

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: D Arnaldi, M Biehl, N Bregman, G Carli, R Dierckx, K L Leenders, S S Lövdal, P Mattioli, S K Meles, S Morbelli, R Orad, B Orso, R J Renken, T Shiner, R van Veen

Ngôn ngữ: eng

Ký hiệu phân loại: 353.5332 *Administration of social welfare

Thông tin xuất bản: Germany : European journal of nuclear medicine and molecular imaging , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 187359

PURPOSE: Center-specific effects in PET brain scans arise due to differences in technical and procedural aspects. This restricts the merging of data between centers and introduces source-specific bias. METHODS: We demonstrate the use of the recently proposed machine learning method Iterated Relevance Matrix Analysis (IRMA) for harmonization of center-specific effects in brain RESULTS: At the initial IRMA iteration, the system was able to determine the center origin of the four HC cohorts almost perfectly. The method required six iterations, corresponding to a six-dimensional subspace CONCLUSION: IRMA can be used to learn and disregard center-specific information in features extracted from brain
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH