Probabilistic and machine-learning methods for predicting local rates of transcription elongation from nascent RNA sequencing data.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Rebecca Hassett, Peter K Koo, Lingjie Liu, Adam Siepel, Shushan Toneyan, Yixin Zhao

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: England : Nucleic acids research , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 187906

Rates of transcription elongation vary within and across eukaryotic gene bodies. Here, we introduce new methods for predicting elongation rates from nascent RNA sequencing data. First, we devise a probabilistic model that predicts nucleotide-specific elongation rates as a generalized linear function of nearby genomic and epigenomic features. We validate this model with simulations and apply it to public PRO-seq (Precision Run-On Sequencing) and epigenomic data for four cell types, finding that reductions in local elongation rate are associated with cytosine nucleotides, DNA methylation, splice sites, RNA stem-loops, CTCF (CCCTC-binding factor) binding sites, and several histone marks, including H3K36me3 and H4K20me1. By contrast, increases in local elongation rate are associated with thymines, A+T-rich and low-complexity sequences, and H3K79me2 marks. We then introduce a convolutional neural network that improves our local rate predictions. Our analysis is the first to permit genome-wide predictions of relative nucleotide-specific elongation rates.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH