CONTEXT: Solute-solvent interactions are crucial for life processes, as biological reactions primarily take place in liquid environments. Water, owing to its remarkable capacity for hydrogen bonding, plays a pivotal role as a solvent in these biological systems. This study computationally investigates the hydration of theobromine, a molecule with significant therapeutic potential and a favorable safety profile. It focuses on the intermolecular interactions within 1:1 theobromine-water complexes in order to provide a comprehensive identification of the potential interaction sites for water when theobromine is dissolved in it. In addition, the research extends to investigate species with up to three water molecules to explore the potential for cooperative binding phenomena. METHODS: In this work, we have employed MP2/6-311++G(d,p) and