Automated quantification of brain PET in PET/CT using deep learning-based CT-to-MR translation: a feasibility study.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Kyobin Choo, Seongjin Kang, Daesung Kim, Sangwon Lee, Jaewon Yang, Mijin Yun

Ngôn ngữ: eng

Ký hiệu phân loại: 363.232 Patrol and surveillance

Thông tin xuất bản: Germany : European journal of nuclear medicine and molecular imaging , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 187982

PURPOSE: Quantitative analysis of PET images in brain PET/CT relies on MRI-derived regions of interest (ROIs). However, the pairs of PET/CT and MR images are not always available, and their alignment is challenging if their acquisition times differ considerably. To address these problems, this study proposes a deep learning framework for translating CT of PET/CT to synthetic MR images (MR METHODS: In this retrospective study, 139 subjects who underwent brain [ RESULTS: Compared to MR CONCLUSION: We demonstrated a deep learning framework for automated regional brain analysis in PET/CT with MR
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH