Soft Crawling Microrobot Based on Flexible Optoelectronics Enabling Autonomous Phototaxis in Terrestrial and Aquatic Environments.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jiahui Cheng, Xue Feng, Yang Jiao, Peng Jin, Haibo Li, Chen Lin, Bingwei Lu, Yinji Ma, Yunmeng Nie, Zhouheng Wang, Ruiping Zhang

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : Soft robotics , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 188035

 Many organisms move directly toward light for prey hunting or navigation, which is called phototaxis. Mimicking this behavior in robots is crucially important in the energy industry and environmental exploration. However, the phototaxis robots with rigid bodies and sensors still face challenges in adapting to unstructured environments, and the soft phototaxis robots often have high requirements for light sources with limited locomotion performance. Here, we report a 3.5 g soft microrobot that can perceive the azimuth angle of light sources and exhibit rapid phototaxis locomotion autonomously enabled by three-dimensional flexible optoelectronics and compliant shape memory alloy (SMA) actuators. The optoelectronics is assembled from a planar patterned flexible circuit with miniature photodetectors, introducing the self-occlusion to light, resulting in high sensing ability (error <
  3.5°) compared with the planar counterpart. The actuator produces a straightening motion driven by an SMA wire and is then returned to a curled shape by a prestretched elastomer layer. The actuator exhibits rapid actuation within 0.1 s, a significant degree of deformation (curvature change of ∼87 m
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH